Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension.

نویسندگان

  • Ru-Jeng Teng
  • Jianhai Du
  • Scott Welak
  • Tongju Guan
  • Annie Eis
  • Yang Shi
  • Girija G Konduri
چکیده

Autophagy is a process for cells to degrade proteins or entire organelles to maintain a balance in the synthesis, degradation, and subsequent recycling of cellular products. Increased reactive oxygen species formation is known to induce autophagy. We previously reported that increased NADPH oxidase (NOX) activity in pulmonary artery endothelial cells (PAEC) from fetal lambs with persistent pulmonary hypertension (PPHN) contributes to impaired angiogenesis in PPHN-PAEC compared with normal PAEC. We hypothesized that increased NOX activity in PPHN-PAEC is associated with increased autophagy, which, in turn, contributes to impaired angiogenesis in PPHN-PAEC. In the present study, we detected increased autophagy in PPHN-PAEC as shown by increased ratio of the microtubule-associated protein 1 light chain (LC3)-II to LC3-I and increased percentage of green fluorescent protein-LC3 punctate positive cells. Inhibiting autophagy by 3-methyladenine, chloroquine, and beclin-1 knockdown in PPHN-PAEC has led to decreased autophagy and increased in vitro angiogenesis. Inhibition of autophagy also decreased the association between gp91(phox) and p47(phox), NOX activity, and superoxide generation. A nonspecific antioxidant N-acetylcysteine and a NOX inhibitor apocynin decreased autophagy in PPHN-PAEC. In conclusion, autophagy may contribute to impaired angiogenesis in PPHN-PAEC through increasing NOX activity. Our results suggest that, in PPHN-PAEC, a positive feedback relationship between autophagy and NOX activity may regulate angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension.

Persistent pulmonary hypertension of newborn (PPHN) is associated with impaired pulmonary vasodilation at birth. Previous studies demonstrated that a decrease in angiogenesis contributes to this failure of postnatal adaptation. We investigated the hypothesis that oxidative stress from NADPH oxidase (Nox) contributes to impaired angiogenesis in PPHN. PPHN was induced in fetal lambs by ductus art...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Cross talk between autophagy and apoptosis in pulmonary hypertension

Endothelial cell (EC) apoptosis and apoptosis resistant proliferation have been proposed to play crucial roles in the development of featured plexiform lesions in the pathogenesis of pulmonary hypertension (PH). Subsequently, EC injury associated smooth muscle cell (SMC) proliferation facilitates vascular remodeling and eventually leads to narrowed vascular lumen, increased pulmonary vascular r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 302 7  شماره 

صفحات  -

تاریخ انتشار 2012